


---

|                          |   |                                                                 |
|--------------------------|---|-----------------------------------------------------------------|
| <b>Product Name</b>      | : | ND-011992                                                       |
| <b>Cat. No.</b>          | : | PC-20990                                                        |
| <b>CAS No.</b>           | : | 2446880-46-0                                                    |
| <b>Molecular Formula</b> | : | C <sub>21</sub> H <sub>14</sub> F <sub>3</sub> N <sub>3</sub> O |
| <b>Molecular Weight</b>  | : | 381.36                                                          |
| <b>Target</b>            | : | Bacterial                                                       |
| <b>Solubility</b>        | : | 10 mM in DMSO                                                   |



CAS: 2446880-46-0

## Biological Activity

ND-011992 is a cytochrome bd oxidase (**Cyt-bd**) inhibitor, inhibits *Mycobacterium tuberculosis* respiratory complex I with IC50 of 0.12 uM, targets respiratory complex I and bo3 oxidase in addition to bd-I and bd-II oxidases.

ND-011992 is active against *M. tuberculosis* H37Rv with IC50 of 2.8-4.2 μM.

ND-011992 synergizes with Q203 to inhibit ATP production and growth in mycobacteria.

ND-011992 lowers the minimum inhibitory concentration 50% (MIC50) of Q203 (Cat. PC-42302) from 3.16 to 0.97 nM in *M. tuberculosis* H37Rv.

ND-011992 inhibits oxygen consumption in the presence of Q203.

ND-011992 inhibits *M. bovis* BCG oxygen consumption rate (OCR) with IC50 of 0.8 uM.

ND-011992 does not affect electron transfer within the cytochrome bcc:aa3 supercomplex.

ND-011992 has a low spontaneous resistance mutation frequency and is active against drug-resistant *M. tuberculosis* clinical isolates.

The combination ND-011992/Q203 is bactericidal against replicating and non-replicating *M. tuberculosis* H37Rv and shows potency *in vivo*.

ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain.

## References

Lee BS, et al. **EMBO Mol Med.** 2021 Jan 11;13(1):e13207.

**Caution: Product has not been fully validated for medical applications. Lab Use Only!**

E-mail: [tech@probechem.com](mailto:tech@probechem.com)

---